
The following paper was originally published in the
Proceedings of the USENIX 1996 Annual Technical Conference

San Diego, California, January 1996

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Implementation of IPv6 in 4.4 BSD

Randall J. Atkinson, Daniel L. McDonald, Bao G. Phan,
Craig W. Metz, and Kenneth C. Chin

Information Technology Division, Naval Research Laboratory

Implementation of IPv6 in 4.4 BSD

Randall J. Atkinson, Daniel L. McDonald, Bao G. Phan,
Craig W. Metz�, & Kenneth C. Chin

Information Technology Division, Naval Research Laboratory

Abstract

The widespread availability of the TCP/IP proto-
cols in early versions of BSD UNIX fostered the
currently widespread use of those protocols in com-
mercial products. Rapid depletion of the IPv4 ad-
dress space has caused the Internet Engineering Task
Force to design version 6 of the Internet Protocol
(IPv6). IPv6 has some similiarities with IPv4, but
it also has many di�erences, most notably in address
size. This paper describes our experience creating a
freely distributable implementation of IPv6 inside
4.4 BSD, with focus on the areas that have changed
between the IPv4 and IPv6 implementations.

1 Introduction

During the past decade, the worldwide Internet has
grown at exponential rates, not only in North Amer-
ica but also in Europe and Asia. [Lot92] This, com-
bined with suboptimal address allocation practices,
has led to increasing depletion of the IP version 4
(IPv4) address space. One direct result of the IPv4
address depletion was that the Internet Engineer-
ing Task Force (IETF), began working to create a
revised version of the Internet Protocol (IP). This
e�ort is called Next-Generation IP (IPng). The re-
sulting protocol is IP version 6 (IPv6). When the
IPng e�ort began, there were several contenders, but
in July 1994 the SIPP proposal became the primary
basis for IPv6.
The widespread availability of TCP/IPv4 in early

versions of BSD UNIX was crucial to the success and
deployment of the Internet technologies. In order
to help make Next-Generation IP as widely avail-
able, the authors began working with the Simple In-
ternet Protocol (SIP) Working Group of the IETF
in 1992.[Dee93] As SIP evolved into SIPP [Hin94]
and then into IPv6, the authors began prototyping,
initially in BSD Net/2 and currently in 4.4 BSD.

�Although Craig W. Metz is with Kaman Sciences Corpo-
ration, he may be reached at NRL.

Our primary development systems were Sun SPARC
workstations and i486 systems running 4.4 BSD 1.
Implementation issues, rather than the details of

the IPv6 protocol, are the focus of this paper. A
number of implementation issues arose with IPv6
and have been resolved. Obvious issues, such as
supporting 128 bit addresses instead of 32 bit ad-
dresses, are discussed in addition to the less obvious
issues of how to implement IPv6 security inside a
BSD kernel. We assume that the reader is some-
what familiar with the IPv6 protocol [DH95] and
the 4.4 BSD-Lite implementation of IPv4. Figure 1
shows a rough overview of 4.4 BSD-Lite's Internet
implementation, along with some of the new mod-
ules for IPv6. To add a new version of IP, many of
the surrounding modules had to be modi�ed as well.

2 Changes in Basic IP Functions

2.1 Di�erences in packet format

Perhaps the most obvious di�erence between IPv6
and its predecessor is the packet format. Although
some in the Internet community felt that 64 bit ad-
dresses were su�ciently large, others insisted that
128-bit addresses were needed so that plug-and-play
address assignment similar to ISO ES-IS could be
supported. Many of the IPv4 header �elds that
were unused in practice (Figure 2) were eliminated
or moved to options, making the IPv6 base header
(Figure 3) more streamlined. One signi�cant ad-
dition to the header is the Flow Identi�er which
is an important hook for resource reservation tech-
niques [ZBE+93] currently being developed within
the IETF.
The sparse IPv6 header is optimized for minimal

processing. An IPv6 router needs only to verify
the version number, inspect the destination address,

1The systems running 4.4 BSD (encumbered) have had

the 4.4 BSD-Lite networking changes incorporated into them.
Some call this a BSD Net/3 system.

PF_INET6 socket

IPv6 Engine

Kernel space

User space

Device drivers or
tunnels.

Modified

Unchanged

New

Sockets glue

Protocol Control Blocks (PCBs)

UDP
Engine

TCP
Engine

IP Engine

PF_INET socket

Figure 1: Simple Overview of 4.4 BSD-Lite Internet
Modules

decrement the hop counter, and process hop-by-hop
options if they are present. (The
ow label can be
used to optimize this process further.) An IPv4
router has to perform everything an IPv6 router
does, as well as verify and recompute the header
checksum, and fragment the datagram further if
needed. An IPv6 destination host initially only has
to check the validity of the version and destination
address. If there are options, they are daisy-chained
and indicated by the Next Header �eld. Otherwise, a
higher-level protocol (e.g. TCP) is the next header
processed. An IPv4 destination host has to verify
not only the version and destination address, but
the IP header checksum as well.

2.2 Protocol Processing

A number of the more recently developed IPv4 op-
tional features are mandatory in IPv6. Other fea-
tures, such as cryptographic security, are new with
IPv62. These have caused a number of changes in
IP protocol processing.
IPv6 daisy-chains optional headers after the base

header. Our implementation pre-parses an IP packet
into its constituent headers and upper-layer proto-

2The cryptographic security recently standardised for IPv4

and IPv6 was originally designed for use with IPv6 and later
adapted for use with IPv4.

col data as part of the initial IPv6 input processing.
Although this does degrade performance, it has sim-
pli�ed the processing of optional IPv6 headers. We
plan to create a fast path around the preparsing code
for packets containing no optional headers.
The Path MTU Discovery [MD90] technique for

avoiding IP fragmentation in routers is mandatory
for IPv6. IPv6 does not have any intermediate frag-
mentation and instead relies on Path MTU Discov-
ery and end-to-end fragmentation. Our implemen-
tation stores Path MTU information in host routes.
Host routes are automatically created for IP commu-
nications originating on the local machine. Storing
this information in the routing table makes this data
available to TCP, UDP, and ICMP. IPv6 requires a
minimum MTU of 576 bytes, which is much larger
than the 68 byte minimum MTU of IPv4. How-
ever, even this larger size might be too small if cer-
tain IPv6 options, such as the Hop-by-Hop Options
Header (which can be up to 2048 octets), are used.
In such cases, end-to-end fragmentation will be re-
quired.

3 Security Processing

Two cryptographic security mechanisms have been
de�ned for IPv6 [Atk95c]. One, known as the Au-
thentication Header (AH), provides authentication
without con�dentiality[Atk95a]. The second, known
as the Encapsulating Security Payload (ESP), pro-
vides con�dentiality through encryption of packet
contents. [Atk95b] ESP has two modes. The �rst
mode, known as Transport-mode, encrypts only the
upper-layer header and data (such as TCP, UDP, or
ICMP) and leaves the IP header in the clear. The
second mode, known as Tunnel-mode, encrypts an
entire IP datagram, prepending an additional clear-
text IP header outside the encrypted IP datagram so
that the packet can be routed. The implementation
of these mechanisms broke new ground within the
BSD kernel. In addition to implementing the Au-
thentication Header and both modes of ESP, we also
implemented the kernel support required to manage
network security associations, including the crypto-
graphic keys.
The IPv6 security mechanisms can use any appro-

priate encryption or authentication algorithm. The
mandatory algorithms for a compliant implemen-
tation are keyed MD5[MKS95b] for authentication,
and DES-CBC[MKS95a] for encryption. Both algo-
rithms are in this implementation. To implement
a new ESP or AH algorithm, the kernel must be
recompiled with support for the new algorithms in
place. Other algorithms, such as triple-DES, are be-

Version Hdr Len Type of Service Packet Length
Fragment Identi�cation Flags and Fragment O�set

Time-To-Live Protocol Header Checksum
Source Address

Destination Address

Figure 2: IPv4 Packet Format

Version Priority Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 3: IPv6 Packet Format

ing implemented by others. Later in this paper, we
discuss why it is straightforward to add support for
additional cryptographic algorithms.

Both ESP Transport-mode encryption and Au-
thentication Header output processing are normally
performed immediately before any fragmentation on
outgoing packets and after reassembly on the input
side. They are done this way because, except for
fragmentation, they need to operate on the packet
as it will appear on the wire. For example, the source
address for the packet from a multi-homed system
must be known before encryption or authentication
can take place.

3.1 Security Associations

A fundamental concept behind IP security is the Se-
curity Association. A Security Association contains
all of the con�guration data for a particular secure
session between two or more systems communicating
via IP. For example, the security services in use (AH
or ESP), the cryptographic algorithm(s) in use, the
cryptographic key(s) in use, the key lifetimes, the
Security Parameters Index (SPI), and the sensitiv-
ity level (e.g. Unclassi�ed, Secret) of the session are
all components of a Security Association. In order
to support multicast as well as unicast, all Security
Associations are one-way from source to destination.
So a typical telnet session would need two Security
Associations, one in each direction.

Security associations are stored in a table inside
the kernel. A module called the Key Engine controls
access to the table. The Key Engine allows kernel
services, such as the IPv6 module, to obtain secu-

rity associations for inbound and outbound packets.
The Key Engine also communicates with user-level
key management programs so that key management
may be implemented properly. The relationship be-
tween the key engine and user-level key management
programs is similar to the relationship between the
routing socket[Skl91] and programs such as gated(8).

3.2 Security Processing Structure

The authentication processing function is split into
three major parts. The �rst, a keyed message di-
gest function, is selected on a per{association basis
through an algorithm switch that calls the appropri-
ate computation function. The second, the header
processing routines, �nds the appropriate security
association and policy actions for the packet and ei-
ther builds or parses the actual option header for
authentication. The third part is the meat of the au-
thentication function. This routine walks the packet,
header by header, zeroing header �elds that vary
unpredictably end-to-end, and passing other header
�elds and the packet data into the keyed message di-
gest function. The resulting message digest data can
be either inserted into the outgoing header or, in the
case of an incoming packet, checked with the one in
the header. The keyed message digest functions are
treated in the AH calculation function as stream op-
erations; any necessary blocking and padding must
be handled by the implementation of the keyed mes-
sage digest functions.

The encryption processing function is split into
similar parts. The �rst, an encryption/decryption
function, and the second, a transform header con-

struction and parsing function, are selected on a
per{association basis through an algorithm switch.
Because almost all of the header format can vary
depending on which cryptographic transform is be-
ing used, it is necessary that both the cryptographic
functions and the header processing functions be
switchable. There is a generic reblocking function
that runs a speci�ed encryption or decryption func-
tion over the data while arranging it into properly
sized blocks. Block-oriented encryption and decryp-
tion functions require the encrypted data to be an
integral number of cryptographic blocks.

3.3 Output Security Processing

Immediately before IP fragmentation is performed,
ipv6 output() calls an IP security output pol-
icy function, ipsec output policy(), to determine
whether this packet needs security. This function
examines the system security level con�gured by the
administrator and the socket security level requested
by the process on the socket. The function is able to
examine the socket security level because each out-
going packet data chain now contains a back pointer
to the socket that sent the packet. The security
output policy function then examines the system-
wide security policy and the socket-requested secu-
rity policy and applies the more paranoid of these
policies to the outgoing packet.

The ipsec output policy() function is also re-
sponsible for making the getassocbysocket() call
into the Key Engine to obtain Security Association

data for the outgoing packet. If the Key Engine has
the appropriate Security Associations, it provides
access to them. If no appropriate Security Associ-
ation exists and a key management daemon is run-
ning, then the Key Engine sends a Request message
to that daemon and informs the output policy func-
tion that the Security Association has been delayed.
If no appropriate Security Association exists and no
key management daemon is running, then the Key
Engine returns an error to ipsec output policy().
If this error occurs, it will eventually be presented to
the user as the newly de�ned IP Security processing
error, EIPSEC.

If IP security is needed and all appropriate secu-
rity information is available for the outgoing packet,
then the output security policy function will return
both an indication of which services are needed and
pointers to the appropriate Security Associations.
The IP Output function then makes the appropriate
calls to apply outgoing security services and then
sends the packet out. If any errors occur during se-
curity output processing, the packet will be dropped

and the user will be given the EIPSEC error men-
tioned above. In the future, we might enhance the
getassocbysocket() call to provide the user iden-
ti�cation or uid associated with the network socket
so that the Key Engine can provide �ner granularity
of keying. The current implementation does support
both shared (i.e. host-oriented) keys and also unique
(i.e. socket-oriented) keys.

3.4 Input Security Processing

For incoming packets, the task is signi�cantly eas-
ier. When an Authentication Header or Encap-
sulating Security Payload header is encountered,
it is processed by calling the appropriate IP se-
curity input function (either ipsec ah input() or
ipsec esp input()). That function reads the Secu-
rity Parameters Index (SPI) contained in the clear-
text portion of the received packet and makes a
getassocbyspi() call into the Key Engine to ob-
tain the correct Security Association for the received
packet. If this call succeeds, the security input pro-
cessing is performed and the appropriate security-
related
ag is set. The packet data chain has two
new
ags, both initially cleared on input, called
M AUTHENTIC and M DECRYPTED. These
ags indicate
that the packet passed authentication processing
and encryption processing, respectively. If any se-
curity input processing fails, the packet is dropped
and appropriate kernel statistics counters are incre-
mented. A modi�ed netstat(8) is supplied that can
display these statistics for the system administrator.
If more than one form of security has been applied,
then the packet will go through more than one secu-
rity input processing function.

The input security processing code also performs
special checks comparing the outer IP source address
and the (previously encrypted) inner IP source ad-
dress for the case when an IP datagram is tunnelled
inside another IP datagram and either the Authen-
tication Header or the Encapsulating Security Pay-
load is present. These checks are intended to prevent
an adversary system from encapsulating a forged
packet inside an authenticated or encrypted legiti-
mate packet and tricking the receiving system into
believing the forged packet was authentic. If these
source address checks fail, then the M AUTHENTIC or
M DECRYPTED
ags on the received packet data chain
are cleared.

After security input processing is completed, the
normal input processing resumes. Once the packet
reaches the transport layer, the transport layer's
input function, for example tcp input(), calls
ipsec input policy() to perform an input secu-

rity policy check. The incoming packet is dropped
if it does not meet the requirements for authenti-
cation or encryption that exist for its destination
socket. Because ipsec input policy() checks not
only the socket security requirements but also the
system-wide security requirements, the system ad-
ministrator can mandate a minimum security level
for all normal network connections.

3.5 Policy Separation

The separation of the policy engine from the mech-
anisms allows per-socket security selections and ad-
ministrative security selections to be combined in
sophisticated ways. For instance, an administrator
could require that packets coming in on a certain
range of privileged ports must come from a privi-
leged port and must be authentic in order to protect
the administrator's system from potential abuses.
The current policy engine only implements simple
system-wide decisions (e.g., drop all non-authentic
packets, always use authentication if we have a secu-
rity association that will facilitate it) in conjunction
with application requested socket security. Enhance-
ments to the security policy engine are planned for
the future.

3.6 Algorithm-independence

Care was taken to provide multiple levels of indirec-
tion to take advantage of the algorithm-independent
nature of the Authentication Header and Encapsu-
lating Security Payload (ESP) speci�cations. Both
implementations use an algorithm switch, which is
indexed by a value in the security association, to
support multiple algorithms concurrently and allow
easy addition of new message digest and encryption
functions. This switch is more complex for ESP,
because almost all of the ESP header format can
change as a function of the transform in use. For this
case, the switch allows implementors to specify the
header processing code and the encryption code sep-
arately for greater
exibility. For instance, someone
wanting to substitute the IDEA algorithm [LM91]
for the default DES-CBC algorithm but still use the
same basic header format could create a new algo-
rithm switch entry that uses the same header pro-
cessing functions as DES-CBC [MKS95a] but calls
the IDEA encryption functions instead. Di�erent
algorithms will have di�erent performance impacts.
Supporting multiple algorithms in the kernel does
not exact a signi�cant performance penalty.

4 Changes to ICMP and IGMP

The Internet Control Message Protocol (ICMP) is
perhaps not as widely known as TCP or UDP, but
it performs a critical function in keeping the network
operating smoothly. The Internet Group Member-
ship Protocol (IGMP) is integral to IP multicasting.
ICMP for IPv6 is su�ciently di�erent that it is now
sometimes referred to as ICMPv6 [Pos81][DC95].

Despite having similar header syntax, ICMPv6
di�ers from ICMP for IPv4 in four major ways.
First, ICMPv6, like TCP and UDP, requires a
pseudo-header to be included in its checksum cal-
culation. Second, the di�erence between informa-
tional messages (e.g. Echo) and error messages (e.g.
Port Unreachable) is now indicated by the high bit
in the ICMPv6 message type. Third, ICMPv6 ab-
sorbs the functions of the formerly separate IGMP
[Dee89], ARP [Plu82][FMMT84], Proxy ARP, and
ICMP Router Discovery [Dee91] protocols. Finally,
ICMPv6 also adds support for stateless address
auto-con�guration. Because ICMP is above the IP
layer, all of these functions can now be authenti-
cated and or encrypted using the IP security mech-
anisms, as long as appropriate security associations
exist. Sites that wish to bootstrap securely can now
do so.

4.1 Traditional ICMP and IGMP

ICMPv6 retains the functions traditionally per-
formed by ICMP and IGMP. The Echo and Echo-

Reply messages, utilized by ping(8), are still part
of ICMPv6. Unreachability of varying forms is in-
dicated by the ICMPv6 Unreachable message type.
Extensions have been added to indicate unreach-
able on-link neighbors, as well as errors with strict
source routing. A Message Too Big message indi-
cates when an IPv6 datagram is too large for a link
on its path. Path MTU discovery [MD90], a require-
ment for IPv6, is implemented using these messages.
Parameter Problem messages indicate invalid IPv6
option �elds, as they do in IPv4's ICMP. Time Ex-

ceeded messages indicate either a hop limit that has
decremented to zero, or that an IPv6 reassembly has
timed out.3

ICMPv6 has three additional informational mes-
sages: Group Report, Group Query, and Group Ter-
minate. The �rst two behave just like the IGMP
Report and Query messages. The Group Terminate

3This implementation cannot send Time Exceeded mes-
sages for IPv6 reassembly timeouts; the "o�ending packet"

needed for the ICMPv6 message is no longer available for
transmission because reassembly is occurring.

message is an optimization so that routers can be in-
formed more quickly about hosts leaving multicast
groups.

4.2 Address Auto-Con�guration and

Router Discovery

The Internet community mandated that IPv6 sup-
port simple address auto-con�guration for hosts.
IPv6 has two solutions to this problem. The �rst
approach is to use an optional con�guration proto-
col, such as DHCPv6. This solution is beyond the
scope of this paper. The second approach, known as
stateless address autocon�guration, is required, and
is implemented in ICMPv6 [TN95].

4.2.1 Link-local Addresses

When an interface is con�gured for IPv6, it must
have a link-local address. A link-local address is
formed by placing a link-local pre�x fe80:: in front
of a token, usually the interface's MAC address.
In our implementation, this is done by the ifcon-
�g(8) application placing this address on an inter-
face before any other addresses are placed on the
same interface. Implementations must be able to
detect whether their link-local address has been du-
plicated on the same link (e.g. Ethernet).[NNS95]
Our planned approach to this collision detection is
discussed in the Neighbor Discovery section. Once
the link-local address is veri�ed as being unique
on a link, the �rst phase of stateless address auto-
con�guration is completed. The IPv6 node can then
send out ICMPv6 Router Solicitmessages to locate a
router, and begin the second phase of address auto-
con�guration.

4.2.2 Router Discovery

IPv6 routers send out periodic Router Advertise-

ment messages to the all-nodes multicast address.
Also, IPv6 routers send out Router Advertisement

messages in response to Router Solicitmessages. Be-
sides performing the traditional jobs of IPv4 router
advertisements, IPv6 router advertisements also ad-
vertise parameters relating to Neighbor Discovery:
suggested MTUs on variable-MTU links, suggested
maximum hop limits, and on-link pre�xes.
It is the advertisement of on-link pre�xes which

completes stateless address auto-con�guration. If
the Router Advertisement message indicates that
stateless con�guration is to be performed, the mes-
sage will also contain the globally routable address
pre�x used on the link. The node then takes the
token from its link-local address, and prepends the

advertised pre�x to form an automatically con�g-
ured globally routable address. The internal code to
handle such advertisements also handles the manual
address con�guration requests from programs such
as ifcon�g(8).
Unlike IPv4, IPv6 addresses can have lifetimes.

In concert with stateless address auto-con�guration,
lifetimes provide a way for relatively rapid IPv6 ad-
dress renumbering to occur. Provider-oriented ad-
dressing is one of the address schemes that will be
used with IPv6.[RLH+95] With provider-oriented
addressing, the ability to rapidly renumber many
systems at a site is essential if that site should ever
want to change network service providers. Hence,
IPv6 interface addresses in the kernel now contain
lifetime �elds.

4.3 Neighbor Discovery

IPv6 does not use ARP.4 Instead, IPv6 uses mul-
ticasting and ICMPv6 to discover the addresses of
on-link neighbors.[NNS95] Our implementation uses
host routes for on-link neighbors and keeps link-layer
information inside the route, much as 4.4BSD im-
plements ARP entries. Like ARP, IPv6 neighbor
discovery has the route's gateway address point to
a data-link socket address, for example an Ethernet
MAC address.

IPv6 Neighbor Discovery is responsible for �nd-
ing the link address information for the host route
entries. If an IPv6 destination is determined to be
on link, either by matching an on-link pre�x (repre-
sented as a cloning network route, as IPv4 does), or
by determining that there is no other way to reach
a destination, a neighbor solicit is sent out to a spe-
cial multicast address. The special multicast rout-
ing pre�x ff02::1: is prepended to the low 32 bits
of the solicited neighbor. All nodes automatically
join the Solicited Nodes multicast group appropri-
ate for their own addresses. Broadcast does not exist
in IPv6; multicast replaces all uses for broadcast.5

Once a Neighbor Solicit is heard, enough informa-
tion is known to send a unicast Neighbor Advertise-
ment to the solicitor, and now the soliciting node
knows that the neighbor is reachable. While the
solicted node has enough information to return the
unicast neighbor advertisement, reachability the op-
posite way is not yet con�rmed. Unicast solicit and
advertisement messages con�rm the reachability of
the neighbor after initial reachability is established.
Upper-level protocols (e.g. TCP) can also be used

4Hence, ARP-related broadcast storm problems will not
be present with IPv6

5Hence, broadcast storms will not exist with IPv6.

to provide reachability con�rmation.6

Users can use netstat -r to examine the state
of currently reachable and recently reachable neigh-
bor systems. This neighbor reachability information
is kept as part of the routing table in the kernel,
so reachability updates for one session to a neigh-
bor will also refresh reachability for other sessions
to the same neighbor. Neighbors that have be-
come unreachable will linger in the routing table and
will eventually be marked with the RTF REJECT
ag.
This is similar to the way ARP is handled in 4.4-Lite
BSD.
Neighbor discovery can be used to detect the

uniqueness of a link-local address. After a link-local
address is con�gured, the node sends a multicast
neighbor solicit for it's proposed link-local address.
If no neighbor responds with a neighbor advertise-
ment, then the link-local address is unique for the
link. The alpha release does not currently imple-
ment collision detection, because of the di�culty in
placing the functionality of the detection. If done
in the kernel, a user process may be trapped in the
ioctl(2) call for a long time while collision detection
takes place. If done in user space, multiple calls will
have to be made into the kernel.

5 Transport Layer Changes

Both the UDP and TCP protocols remain un-
changed for IPv6. However, the BSD implemen-
tations required modi�cation to provide concurrent
support for IPv4 and IPv6. The main di�cul-
ties arose due to the di�erent sizes of the IPv4
header and the IPv6 header. Because the TCP and
UDP implementations are shared between IPv4 and
IPv6, we designed a modi�ed Protocol Control Block
(PCB) structure that supports both versions of IP.
Had the original BSD implementation of TCP, UDP,
and IP not been so closely coupled, it would have
been easier to add IPv6 support into the kernel.

5.1 Protocol Control Block

Since TCP and UDP do not change between IPv4
and IPv6, TCP and UDP use the modi�ed Protocol
Control Block structures (PCBs) in the same way.
With IPv6's larger address space, the PCBs were
modi�ed to support both IPv4 and IPv6 addresses
and to denote which addresses are actually in use.
To support both protocols, new unions were devised.
To make these changes invisible to existing code, ap-
propriate #defines were added that silently derefer-

6We are still experimenting with the best way for TCP to
update reachability without impairing performance.

enced the appropriate component of the union. Fig-
ure 4 shows an example of a new union and its cor-
responding new #defines.

union f
struct route ru route;

struct route6 ru route6;

g inp ru;

#define inp route inp ru.route

#define inp route6 inp ru.route6

Figure 4: Route union used in new PCB structure

The IPv4-IPv6 transition speci�cation [GN95]
makes it easier to support both protocols in a sin-
gle PCB by allocating a portion of the IPv6 address
space for use as "IPv4-mapped" addresses, which
cannot be used as addresses in IPv6 datagrams. Ad-
ditionally, if a session is intending to send IPv6 data-
grams, a bit in the session's PCB's
ags will be set
indicating this. If that bit is not set, then IPv4 is in
use. The route, IP header template, and multicast
options elements now use unions so that either IPv4
or IPv6 can be used with the PCB.
New PCB functions were written to support bind,

connect, and notify functions on PF INET6 sockets.
Because such a socket can be used to send and re-
ceive either IPv4 or IPv6 tra�c, these functions
needed to be separate from the equivalent IPv4 func-
tions and also needed to handle both versions of IP.
In the near future we intend to enhance these func-
tions to fully support the IPv6 Flow Identi�er �eld
so that real-time and predictive services are provided
to applications. The in6 pcbnotify() function also
calls the input security policy function to determine
whether a particular error can be passed upwards to
the application or whether that would cause a secu-
rity violation and the error should not be delivered.

5.2 Changes in UDP

The UDP protocol remains unchanged for IPv6,
but the BSD implementation needed to be mod-
i�ed to support both versions of IP. The ma-
jority of the changes to the UDP code resulted
from the need to support the di�erent address for-
mat. The changes are minimal and are isolated to
the following functions udp input(), udp output(),
udp ctlinput(), and udp usrreq(). Almost all
changes occur in the input and output process-
ing of UDP datagrams, handled by the functions
udp input() and udp output(), respectively.

Incoming UDP datagrams, regardless of whether
they are transported over IPv4 or IPv6, are pro-
cessed by udp input(). Where the code needs to ac-
cess elements of the IP header, di�erent code paths
are executed for IPv4 and IPv6 datagrams. The
function relies on a local variable, which it sets on
entrance to the function, to determine which code
path to follow. An example of a code path speci�c
to IPv6 is the processing of an IPv4 packet destined
for an IPv6 socket. The IPv6 BSD Sockets API spec-
i�cation allows an application to receive both IPv4
and IPv6 datagrams using an IPv6 socket.[GTB95]
Code has been added to allow udp input() to han-
dle this special case.

The udp input() function now calls the input se-
curity policy function before processing an incoming
packet. This ensures compliance with both socket
and system security requirements. If an incoming
packet should not be delivered for security policy
reasons, then it is silently dropped. This check does
exact a performance penalty on each received packet,
but we have not yet found a better way to handle
input security policy checks.

The function udp output() is called to create and
send a UDP datagram. It determines whether to
create an IPv4 or IPv6 datagram by looking at
the protocol control block for the socket originat-
ing the datagram. If the socket's protocol family is
PF INET6 and the socket's PCB indicates that the
destination is a native IPv6 address, an IPv6 UDP
datagram is composed and sent down to the IP layer
via the ipv6 output() function. If the protocol
family is PF INET, ip output() is called instead of
ipv6 output. A signi�cant change in udp output()

from its IPv4 version involves the calculation of the
UDP checksum. In IPv4, calculation of the UDP
checksum is optional and is controlled by the global
variable udpcksum. Since IPv6 no longer has an IP
layer checksum, the UDP checksum is not optional
and must be calculated for all IPv6 UDP packets.
This is necessary to provide integrity protection of
the source and destination address that is not pro-
vided by IPv6, which lacks an IP header checksum.

The remaining changes in udp ctlinput() and
udp usrreq() are minor changes to call IPv6 ver-
sions of certain IPv4 functions or to initialize IPv6
speci�c variables in the protocol control block. Over-
all, the modi�cations of UDP code to work with both
IPv4 and IPv6 are straightforward.

5.3 Changes in TCP

The TCP protocol also remains unchanged for IPv6,
but was modi�ed to support both versions of IP.

One change was to add a new member, pf, to
the TCP control block structure, struct tcpcb.
This new member stores the Protocol Family, either
PF INET for IPv4 or PF INET6 for IPv6, in use for
each TCP session. This is used in several parts of
the TCP code to help select the correct IP-speci�c
code branch.

The beginning of the tcp input() function has
a small amount of IP-related processing. This was
broken into two code paths, one for IPv4 and one for
IPv6 at the cost of an if check and a slight increase
in code size.

The main di�culty with the 4.4 BSD-Lite TCP
implementation was its reliance on a single pointer,
struct tcpiphdr *ti, that pointed to a structure
containing both the IPv4 overlay header (Figure 5)
and also the TCP header of received segments. The
tcp input() and tcp reass() functions used this
combined structure for most of the data references
relating to a given TCP segment. There were also
other uses of this structure within the TCP imple-
mentation. Because of the di�ering IP header sizes,
the TCP header starts at a di�erent o�set from the
start of the structure, depending on which IP header
is present. The solution to this problem was to cre-
ate a new pointer struct tcphdr *th which is cal-
culated separately for IPv4 and IPv6, but always
points to the TCP header. The references to TCP
header data that had previously used *ti now use
*th instead.

However, use of the *th pointer did not solve all
of the problems. The older struct tcpiphdr con-
tains an element ti->ti len that pointed to the
packet's length �eld. There is not room to store such
a data item in the struct tcpipv6hdr, which uses a
struct ipv6ovly (Figure 6), but fortunately there
was an existing local variable tlen in tcp input()

that is used instead. Most of the references to IP
data elements are made at the very beginning of the
tcp input() function and so were easily handled.

The tcp reass() function was not amenable to
supporting both versions of IP at the same time, so
our implementation increases code size by adding
a new tcpv6 reass() function that uses struct

tcpipv6hdr in lieu of the struct tcpiphdr used
by the original tcp reass().
The tcp input() function now calls the input se-

curity policy function before processing an incom-
ing TCP segment. This ensures compliance with
both socket and system security requirements. If
an incoming segment should not be processed for
security policy reasons, then it is silently dropped.
If the system security policy is to require authen-

ih next (pointer to next segment hdr)
ih prev (pointer to prev segment hdr)

ih x1 (pad) ih pr (protocol) ih len (length)
ih src (source address)

ih dst (destination address)

Figure 5: Format of struct ipovly IPv4 Overlay

ih next (pointer to next segment header)
ih prev (pointer to prev segment header)

ih src (source address)

ih dst (destination address)

Figure 6: Format of struct ipv6ovly IPv6 Overlay

tication on all received packets, then attempts to
open an unauthenticated TCP connection or unau-
thenticated ping will silently fail as if the destina-
tion system were not reachable at all. As with the
UDP implementation, this check exacts a perfor-
mance penalty.
One bene�t of our changes has been to isolate the

network-layer code more. This might make it easier
to modify TCP further to support TCP over other
network-layer protocols, for example Novell's IPX.
We are concerned about the adverse performance
impact of the IPv6 changes, so we are examining
methods of improving the performance of our imple-
mentation. We have not found anything in the IPv6
speci�cations that inherently reduces TCP perfor-
mance.

6 Changes to Applications

6.1 Network Socket Enhancements

Although the IETF does not standardise applica-
tion programming interfaces, some members of the
IPng Working Group did create an Informational
RFC describing how IPv6 might be used in conjunc-
tion with BSD Sockets [GTB95]. Some changes in
4.4-Lite BSD were needed to comply with that spec-
i�cation. Fortunately, most of the changes involved
adding protocol switch tables, and entries to those
tables[LMKQ89]. Other sockets changes were imple-
mented at lower levels, most notably the aforemen-
tioned PCB code. One can use a PF INET6 socket
to communicate using IPv4 or IPv6, which makes it
easier to transition applications to the new version

#include <sys/socket.h>

#include <netinet6/in6.h>

: : :

struct sockaddr in6 addr6;

int s;

: : :

s = socket(PF INET6, SOCK DGRAM, 0);

addr6.sin6 len = sizeof(addr6);

addr6.sin6 family = AF INET6;

addr6.sin6 port = htons(7);

addr6.sin6 flowinfo = 0;

(void) ascii2addr(AF INET6,

"FE80::800:dead:beef",

&addr6.sin6 addr);

sendto(s, ''hello'', 6, 0, &addr6,

sizeof(addr6));

: : :

Figure 7: Code fragment illustrating use of UDP
over IPv6

of IP.

More extensive changes were needed to
permit applications to request security ser-
vices from IPv6. Several new socket op-
tions were de�ned and implemented, in-
cluding SO SECURITY ENCRYPTION TRANSPORT,
SO SECURITY ENCRYPTION TUNNEL, and
SO SECURITY AUTHENTICATION. These new socket
options are used by an application to request that
ESP in transport-mode, ESP in tunnel-mode, or the

Authentication Header be used with this network
session. Each also has an associated Security

Level parameter. There are currently 4 security
levels implemented. Level 0 does not use security
on outbound packets and does not require it on
inbound packets. Level 1 uses security on outbound
packets if it is available but does not require it on
inbound packets. Level 2 requires security both
outbound and inbound. Level 3 is the same as
level 2 except that outbound packets use a security
association unique to this socket. A planned
enhancement is to also permit an application to
request that its session be provided with a new
security association to replace the one in use. We
consider our new security-related socket options
experimental and may alter them somewhat as we
gain more experience with application issues.

Our kernel implementation permits a system ad-
ministrator to de�ne a default or minimum level of
security. The default security will be used for all
sessions provided with a valid Security Association.
Applications may also request security services via
the above sockets extensions. The system security is
con�gured using the same matrix of 3 protocols and
4 security levels that we described earlier for use in
socket-requested security. We plan to enhance the

exibility of our security policy engine in the future
so that the system administrator can have more so-
phisticated policies than are currently supported.

6.2 Key Management Socket

We also have de�ned a new protocol family, called
PF KEY, for the Sockets application programming
interface. This extension to Sockets provides a
generic interface between security association man-
agement applications, such as a Photuris daemon
[KS95], and the kernel's network security data
structures.[PAM95] This new generic key manage-
ment interface is modeled upon the existing routing
socket, PF ROUTE.[Skl91] This enhancement permits
the key management system to be completely decou-
pled from the IP security implementation. Multiple
key management schemes can be supported concur-
rently if desired. It also will make it easy to change
from one key management algorithm or protocol to
a new key management algorithm or protocol. To
make such a change, only a new daemon needs to be
installed; no kernel modi�cations or kernel rebuild-
ing is necessary. Many published key management
protocols have had
aws discovered years after ini-
tial publication[NS78][DS81]. Hence it is important
to be able to easily change the key management pro-
tocol being used by the system. Our alpha release

includes an application, key(8), that can be used by
the system administrator to manage keys and secu-
rity associations in the kernel. Any key management
scheme, whether automatic key management such as
Photuris or manual key management such as key(8),
can use the PF KEY interface.

6.3 An Example Application: telnet

Most applications will need a small amount of mod-
i�cation to take advantage of IPv6 and its unique
features. Even with these modi�cations, the appli-
cations will continue to support IPv4. Most of these
modi�cations are in the socket code, allowing the use
of the new AF INET6 address family, new data struc-
tures, and the corresponding network functions.

We have modi�ed several applications to use IPv6.
We describe the modi�cations required for telnet in
the followingparagraphs. The telnet application was
also enhanced to add command-line options to set
the socket security level. 7

The telnet client �rst parses the command line
and options. If the user has requested IP secu-
rity services, then the appropriate socket options are
set using setsockopt(). Telnet then uses the new
hostname2addr() and ascii2addr() functions to
seek an IPv6 address for the speci�ed hostname or
text representation of an address. If an IPv6 address
is returned, telnet then opens a PF INET6 socket and
begins communicating. The requested security ser-
vices are automatically applied by the IP security
implementation inside the kernel. If an IP security
processing error (for example, no security associa-
tion can be found and one is needed) occurs, then
the EIPSEC error will be returned to telnet so the
user can be informed of the problem.

The IPv4 library functions inet ntoa(),
inet aton(), gethostbyname(), and
gethostbyaddr() have been superceded by the new
library functions addr2ascii(), ascii2addr(),
hostname2addr(), and addr2hostname()

[GTB95].8 These new library functions work
equally well for both IPv4 and IPv6, making it
easier for applications to support both IPv4 and
also IPv6.

In the future, we plan to add a privileged socket
option to permit applications that need to bypass IP
security to do so (for example, a Photuris daemon).
This socket option would fail if the e�ective user-id
of the process connected to the socket was not equal

7Although 4.4 BSD's telnet includes an encryption option,
a fatal implementation
aw limits its practical value.

8These new functions were originally suggested by Craig
Partridge in an email note to the IETF's IPng mailing list.

to 0 so that ordinary user applications could not by-
pass system security. Such bypass is needed by key
management applications so that they can create the
initial security associations. Certain other applica-
tions having application-layer security, for example
a secured Domain Name Service daemon, might also
need to bypass IP security services. Although this
has not been implemented yet, we believe it will be
straight forward to implement and have already put
some of the hooks in place.

7 Performance

Throughput and round-trip latency were measured
using Rick Jones' NetPerf tool.[Jon95] NetPerf has
more accuracy and reproducibility than some older
tools.[Jef95] Except for Table 5, these measurements
are for tra�c that is neither authenticated nor en-
crypted, though the security policy checks are still
performed.

0

5

1 0

1 5

2 0

2 5

1

6
4

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

Number of bytes

L
at

en
cy

(m

se
c)

UDP/IP

UDP/IPv6

0

5

1 0

1 5

2 0

2 5

1

6
4

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

Number of bytes

L
at

en
cy

(m

se
c)

TCP/IP

TCP/IPv6

Figure 8: UDP and TCP Latency Graphs

In our alpha release, IPv6 performance is some-
what worse than IPv4. UDP latency, shown in Ta-
ble 2, and TCP latency, shown in Table 1, both in-
creased for IPv6. The increased latency, shown in
Figure 8 is in both the inbound and outbound pro-
tocol processing. Comparing longer addresses (four
32-bit words vs. a single 32-bit word) and preparsing
of optional headers are the major contributors to the
increased latency. We plan to add a fast path bypass

Number IPv4. IPv6. Percent
of bytes. (msec). (msec). increase.

1 1.27 1.54 +21%
64 1.45 1.83 +26%

1024 3.12 3.62 +16%
2048 5.34 6.01 +12%
4096 10.4 11.9 +14%
8192 19.0 22.1 +16%

Table 1: TCP Latency

Number of IPv4. IPv6. Percent
bytes. (msec). (msec). increase.

1 0.93 1.08 +17%
64 1.13 1.30 +15%

1024 2.82 3.06 +8%
2048 5.00 5.77 +15%
4096 8.89 9.90 +11%
8192 17.0 20.2 +19%

Table 2: UDP Latency

around the preparsing code in the future. The lower
IPv6 throughput, shown in Table 3 and Table 4, is
due to increased latency and larger packet size.

The 4.4-Lite BSD implementation of TCP/IPv4
has had years of optimisation whilst our alpha re-
lease has had no optimisation. We believe that an
optimised IPv6 implementation will perform at least
as well as a similarly optimised IPv4 implementa-
tion.

Data Socket IPv4 IPv6 Perf.
size bu�er size (KB/sec) (KB/sec) drop
4096 57344 780 731 6.26%
8192 57344 778 729 6.28%
32768 57344 776 730 5.97%
4096 32768 807 763 5.45%
8192 32768 806 758 5.91%
32768 32768 811 762 6.02%
4096 8192 861 775 9.93%
8192 8192 858 784 8.68%
32768 8192 863 784 9.19%

Table 3: TCP Throughput

NetPerf has not yet been modi�ed to use the se-
curity socket options. Making such modi�cations to
NetPerf does not appear trivial. The older ttcp(8)
testing tool was easily modi�ed to use the security
socket options. Table 5 indicates throughput di�er-
ences (measured with ttcp(8)) using authentication,
transport-mode encryption, and both, versus no se-
curity at all. While we have less con�dence in the

Data Socket IPv4 IPv6 Perf.
size bu�er size (KB/sec) (KB/sec) drop

64 32767 537 500 6.82%
1024 32767 1144 1125 1.60%

Table 4: UDP Throughput

absolute values for ttcp(8) than for NetPerf, we be-
lieve the relative performance degradation shown by
ttcp(8) is meaningful. Our security implementations
have not been optimised at all. We believe that we
can noticably improve our encryption performance
by encrypting and decrypting in place and removing
memory copies. Hardware implementations of DES
that run at 1 Gbps exist.[Sch94] Implementations
seeking high performance should probably use such
encryption hardware.

Security Throughput
Features (KB/sec)
None ~775
Authentication ~345
Encryption ~192
Both ~153

Table 5: Impact of IPv6 Security On Throughput.

8 Summary

This paper has described a freely distributable pro-
totype implementation of IPv6 based on 4.4 BSD-
Lite. There are a number of implementation di�er-
ences between IPv4 and IPv6 due to packet format
di�erences and also protocol di�erences. Some of
the assumptions made and techniques used by the
IPv4 implementation are no longer valid for IPv6.
Because the implementation includes the crypto-
graphic security mechanisms mandatory for IPv6,
any networked application can now have the secu-
rity it desires without having to implement it at the
application layer. Performance of TCP/IPv4 and
TCP/IPv6 has been compared.

9 Acknowledgments

This work has been funded by the Information Se-
curity Program O�ce (PD71E) of the US Space
& Naval Warfare Systems Command since 1992
and also by the Computer Systems Technology Of-
�ce of the Advanced Research Projects Agency
(ARPA/CSTO) since 1995. We are grateful for their
support.

References

[Atk95a] Randall Atkinson. IP Authentication
Header, August 1995. RFC-1826.

[Atk95b] Randall Atkinson. IP Encapsulating
Security Payload (ESP), August 1995.
RFC-1827.

[Atk95c] Randall Atkinson. IP Security Architec-
ture, August 1995. RFC-1825.

[DC95] Steve Deering and Alex Conta. ICMP
for the Internet Protocol version 6, June
1995. Work in Progress.

[Dee89] Steve Deering. Host extensions for IP
Multicasting, August 1989. RFC-1112.

[Dee91] Steve Deering. ICMP Router Discovery
Messsages, September 1991. RFC-1256.

[Dee93] Stephen E. Deering. SIP: Simple Inter-
net Protocol. IEEE Networks, 7(3):16{
28, May 1993.

[DH95] Steve Deering and Bob Hinden. IPv6
speci�cation, June 1995. Work in
Progress.

[DS81] D.E. Denning and G.M. Sacco. Times-
tamps in key distribution proto-
cols. Communications of the ACM,
24(8):533{536, August 1981.

[FMMT84] R. Finlayson, T. Mann, J. Mogul, and
M. Theimer. Reverse address resolution
protocol, June 1984. RFC-903.

[GN95] Robert E. Gilligan and Erik Nordmark.
Transition Mechanisms for IPv6 Hosts
and Routers, May 1995. Work in
Progress.

[GTB95] Robert Gilligan, Susan Thomson, and
Jim Bound. IPv6 Program Interfaces
for BSD Systems, July 1995. Work in
progress.

[Hin94] Robert Hinden. Simple Internet Pro-
tocol Plus white paper, October 1994.
RFC-1710.

[Jef95] Je�rey D. Chung and C. Brendan
and S. Traw and Jonathan M. Smith.
Event-Signaling within Higher Perfor-
mance Network Subsystems. In Pro-

ceedings, High Performance Communi-

cations Subsystems, Mystic, CT, August
1995.

[Jon95] Rick A. Jones. NetPerf: A Network
Performance Benchmark (Revision 2.0),
February 1995. Technical Report.

[KS95] Phil Karn and William Simpson. The
Photuris Session Key Management Pro-
tocol, October 1995. work in progress.

[LM91] X. Lai and J. Massey. A Proposal for a
New Block Encryption Standard. In Ad-
vances in Cryptology { EUROCRYPT

'90 Proceedings, pages 389{404, Berlin,
1991. Springer-Verlag.

[LMKQ89] Samuel J. Le�er, Marshall Kirk McKu-
sick, Michael J. Karels, and John S.
Quarterman. The Design and Imple-

mentation or the 4.3 BSD UNIX Op-

erating System. Addison-Wesley, New
York, NY, 1989.

[Lot92] Mark Lottor. Internet Growth (1981-
1991), January 1992. RFC-1296.

[MD90] Je� Mogul and Steve Deering. Path
MTU Discovery, November 1990. RFC-
1191.

[MKS95a] Perry Metzger, Phil Karn, and William
Simpson. The ESP DES-CBC trans-
form, August 1995. RFC-1829.

[MKS95b] Perry Metzger, Phil Karn, and William
Simpson. IP Authentication using
Keyed MD5, August 1995. RFC-1828.

[NNS95] Erik Nordmark, Thomas Narten, and
William Simpson. Neighbor Discovery
for IP Version 6, September 1995. Work
in Progress.

[NS78] R.M. Needham and M.D. Schroeder.
Using Encryption for Authentication in
Large Networks of Computers. Commu-
nications of the ACM, 21(12):993{999,
December 1978.

[PAM95] Bao G. Phan, Randall J. Atkinson, and
Daniel L. McDonald. PF KEY: Key
Management Support inside 4.4 BSD
Unix, December 1995. Technical Re-
port.

[Plu82] D. Plummer. Ethernet address resolu-
tion protocol, November 1982. RFC-
826.

[Pos81] Jon Postel. Internet Control Message
Protocol, September 1981. RFC-792.

[RLH+95] Yakov Rekhter, Peter Lothberg, Robert
Hinden, Steve Deering, and Jon Pos-
tel. An IPv6 Provider-Based Unicast
Address Format, August 1995. Work in
Progress.

[Sch94] Bruce Schneier. Applied Cryptography.
John Wiley & Sons, New York, NY,
1994.

[Skl91] Keith Sklower. A Tree-Based Packet
Routing Table for Berkeley UNIX. In
Proceedings of the Winter '91 USENIX

Conference, Dallas, TX, January 1991.
USENIX Association.

[TN95] Susan Thomson and Thomas Narten.
IPv6 Stateless Address Autocon�gura-
tion, October 1995. Work in Progress.

[ZBE+93] L. Zhang, R. Braden, D. Estrin,
S. Shenker, and D. Zappala. RSVP:
A New Resource ReSerVation Protocol.
IEEE Networks, September 1993.

